Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Radiat Res ; 195(1): 1-24, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1021760

ABSTRACT

As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.


Subject(s)
COVID-19/physiopathology , Pandemics , Radiation Injuries/physiopathology , SARS-CoV-2/pathogenicity , Acute Lung Injury/etiology , Acute Lung Injury/physiopathology , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biomarkers/blood , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/physiopathology , COVID-19/epidemiology , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Hematologic Diseases/etiology , Hematologic Diseases/physiopathology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/etiology , Inflammation/physiopathology , Intercellular Signaling Peptides and Proteins/therapeutic use , Mesenchymal Stem Cell Transplantation , Mice , Organ Specificity , Pyroptosis , Radiation Injuries/blood , Radiation Injuries/drug therapy , Radiation Injuries/immunology , Receptors, Virus/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , SARS-CoV-2/isolation & purification , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/physiopathology , COVID-19 Drug Treatment
2.
Postgrad Med ; 133(1): 20-27, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-759669

ABSTRACT

While COVID-19 has primarily been characterized by the respiratory impact of viral pneumonia, it affects every organ system and carries a high consequent risk of death in critically ill patients. Higher sequential organ failure assessment (SOFA) scores have been associated with increased mortality in patients critically ill patients with COVID-19. It is important that clinicians managing critically ill COVID-19 patients be aware of the multisystem impact of the disease so that care can be focused on the prevention of end-organ injuries to potentially improve clinical outcomes. We review the multisystem complications of COVID-19 and associated treatment strategies to improve the care of critically ill COVID-19 patients.


Subject(s)
COVID-19/physiopathology , COVID-19/mortality , Cardiovascular Diseases/physiopathology , Critical Illness , Cytokines/biosynthesis , Endocrine System Diseases/physiopathology , Gastrointestinal Diseases/physiopathology , Hematologic Diseases/physiopathology , Humans , Kidney Diseases/physiopathology , Musculoskeletal Diseases/physiopathology , Nervous System Diseases/physiopathology , Obesity/physiopathology , Organ Dysfunction Scores , Respiratory Tract Diseases/physiopathology , Risk Factors , SARS-CoV-2 , Skin Diseases/physiopathology , Systemic Inflammatory Response Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL